
xp123.com

The Test/Code Cycle in XP, Part 2:
GUI

Catch Themes
16-20 Minuten

People who unit-test, even many who unit-test in Extreme
Programming, don't necessarily test the user interface. You
can use JUnit to assist in this testing, however. This paper
will work through a small but plausible example, giving the
flavor of testing and programming using JUnit. This paper is
part 2, but can be read on its own; part 1 developed the
model.

Example

Suppose we're developing a simple search engine. We'd
like the user interface to look something like this:

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

1 von 22 16.08.17, 12:00

We'll develop it in the XP style, working back and forth
between testing and coding. The code fragments will reflect
this: tests will be on the left side of the page, and
application code on the right.

Model First

When you're creating a GUI (graphical user interface), you
should develop and test the model first. We'll assume this
has been done, and that it has the following interface:

public class SearcherFactory {

 public static Searcher

get(String s) throws IOException

{...}

}

public interface Searcher {

 public Result find(Query q);

}

public class Query {

 public Query(String s) {...}

 public String getValue()

{...}

}

public interface Result {

 public int getCount();

 public Document getItem(int

i);

}

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

2 von 22 16.08.17, 12:00

public interface Document {

 public String getAuthor();

 public String getTitle();

 public String getYear();

}

In testing and development of the GUI, I don't mind
depending on the interfaces of the model; I'm less happy
when I have to depend on its concrete classes.

The GUI Connection

What we'd like to happen:

a searcher is associated with the GUI

a query is entered

the button is clicked

the table fills up with the result

We want to make this happen and unit-test the result.

Testing Key Widgets

We proposed a screen design earlier. The first thing we can
test is that key widgets are present: a label, a query field, a
button, and a table. There may be other components on the
panel (e.g., sub-panels used for organization), but we don't
care about them.

So, we'll create testWidgetsPresent(). To make this
work, we need a panel for the overall screen

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

3 von 22 16.08.17, 12:00

("SearchPanel"), the label ("searchLabel"), a textfield for
entering the query ("queryField"), a button ("findButton"),
and a table for the results ("resultTable"). We'll let these
widgets be package-access, so our test can see them.

public void testWidgetsPresent() {

 SearchPanel panel = new

SearchPanel();

assertNotNull(panel.searchLabel);

assertNotNull(panel.queryField);

assertNotNull(panel.findButton);

assertNotNull(panel.resultTable);

}

The test fails to compile. (Of course – we haven't created
SearchPanel yet.) So, create class SearchPanel with its
widget fields, so we can compile. Don't initialize the widgets
yet – run the test and verify that it fails. (It's good practice to
see the test fail once; this helps assure you that it captures
failures, and lets you ensure that the testing is driving the
coding.) Code enough assignments to make the test pass.

Things to notice:

The test helped design the panel's (software) interface.

The test is robust against even dramatic re-arrangements of
the widgets.

We took very small steps, bouncing between test, code,

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

4 von 22 16.08.17, 12:00

and design.

Our panel might not (and in fact, does not) actually display
anything – we haven't tested that.

The panel still doesn't do anything (e.g., if the button were
clicked).

We can make another test, to verify that the widgets are set
up correctly:

public void

testInitialContents() {

 SearchPanel sp = new

SearchPanel();

 assertEquals("Search:",

sp.searchLabel.getText());

 assertEquals("",

sp.queryField.getText());

 assertEquals("Find",

sp.findButton.getText());

 assert("Table starts empty",

sp.resultTable.getRowCount() ==

0);

}

Run this test, and we're ok.

At this point, our SearchPanel code looks like this:

public class SearchPanel extends

JPanel {

 JLabel searchLabel = new

JLabel("Search:");

 JTextField queryField = new

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

5 von 22 16.08.17, 12:00

JTextField();

 JButton findButton = new

JButton("Find");

 JTable resultTable = new

JTable();

 public SearchPanel() {}

}

We could go in either of two directions: push on developing
the user interface, or its interconnection with searching. The
urge to "see" the interface is strong, but we'll resist it in
favor of interconnection.

Testing Interconnection

Somehow, we must associate a Searcher with our GUI, and
verify that we display its results.

We'll give our panel two methods, getSearcher() and
setSearcher(), that will associate a Searcher with the
panel. This decision lets us write another test:

public void testSearcherSetup()

{

 Searcher s = new Searcher()

{

 public Result

search(Query q) {return null;}

 };

 SearchPanel panel = new

SearchPanel();

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

6 von 22 16.08.17, 12:00

 assert ("Searcher not set",

panel.getSearcher() != s);

 panel.setSearcher(s);

 assert("Searcher now set",

panel.getSearcher() == s);

}

The compile fails, so bounce over to SearchPanel, add the
methods, run the tests again, they fail; implement the
set/get methods, and the test passes.

The panel still can't do much, but now we can associate a
Searcher with it.

Testing with a Fake Searcher

A search returns a set of results. When something returns a
list of values, I'm always interested to see how it will behave
when it returns 0, 1, or an arbitrary number.

Because this is a unit test, I don't want to depend on the
real Searcher implementations: I'd rather create my own for
testing purposes. This lets me control behavior in a fine-
grained way. Here, I'll create a new Searcher called
TestSearcher. We'll have the query string be an integer,
which will tell how many items to return. We'll name the
items "a0" (for first author), "t1" (second title), etc.

But first… a test. (Notice this is a test of our testing class,
not of our GUI.)

public void testTestSearcher() {

 assertEquals(new

Query("1").getValue(), "1");

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

7 von 22 16.08.17, 12:00

 Document d = new

TestDocument(1);

 assertEquals("y1",

d.getYear());

 Result tr = new

TestResult(2);

 assert(tr.getCount() == 2);

 assertEquals("a0",

tr.getItem(0).getAuthor());

 TestSearcher ts = new

TestSearcher();

 tr =

ts.find(ts.makeQuery("2"));

 assert("Result has 2 items",

tr.getCount() == 2);

 assertEquals("y1",

tr.getItem(1).getYear());

}

Go through the usual compile/fail cycle, and create the test
classes, starting with TestDocument:

public class TestDocument

implements Document {

 int count;

 public TestDocument(int n)

{count = n;}

 public String getAuthor()

{return "a" + count;}

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

8 von 22 16.08.17, 12:00

 public String getTitle()

{return "t" + count;}

 public String getYear()

{return "y" + count;}

}

The TestResult class has a constructor that takes an integer
telling how many rows should be present:

public class TestResult

implements Result {

 int count;

 public TestResult(int n)

{count = n;}

 public int getCount()

{return count;}

 public Document getItem(int

i) {return new TestDocument(i);}

}

TestSearcher uses the number value of the query string to
create the result:

public class TestSearcher

implements Searcher {

 public Result find(Query q) {

 int count = 0;

 try {count =

Integer.parseInt(q.getValue());}

 catch (Exception ignored)

{}

 return new

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

9 von 22 16.08.17, 12:00

TestResult(count);

 }

}

Run the test again, and it passes.

0, 1, Many

We'll build tests for the 0, 1, and many cases:

public void test0() {

 SearchPanel sp = new

SearchPanel();

 sp.setSearcher (new

TestSearcher());

 sp.queryField.setText("0");

 sp.findButton.doClick();

 assert("Empty result",

sp.resultTable.getRowCount() ==

0);

}

At last, we're using the GUI: setting text fields, clicking
buttons, etc.

We run the test – and it passes! This means we already
have a working solution – if our searcher always returns 0
items.

We move on:

public void test1() {

 SearchPanel sp = new SearchPanel();

 sp.setSearcher (new TestSearcher());

 sp.queryField.setText("1");

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

10 von 22 16.08.17, 12:00

 sp.findButton.doClick();

 assert("1-row result",

sp.resultTable.getRowCount() == 1);

 assertEquals(

 "a0",

sp.resultTable.getValueAt(0,0).toString());

}

Now we fail, because we don't have any event-handling
code on the button.

When the button is clicked, we want to form the string in the
text field into a query, then let the searcher find us a result
we can display in the table. However, we have a problem in
matching types: the Searcher gives us a Result, but the
table in our GUI needs a TableModel. We need an adapter
to make the interfaces conform.

Record our Mental Stack

We have several things in progress at the same time, so it's
a good time to review them – and write them down – so we
don't lose track of anything.

Write the button code

Test and develop a TableModel adapter

Get test1() to pass

Write testN() and get it to pass

Test the "look" of the GUI

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

11 von 22 16.08.17, 12:00

Adapter Implementation

Let's write the button code as if a ResultTableAdapter class
existed:

findButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent

e) {

 Query q = new

Query(queryField.getText());

 resultTable.setModel(

 new

ResultTableAdapter(getSearcher().find(q)));

 }

});

When this fails to compile, stub out a dummy
implementation:

public class ResultTableAdapter

extends DefaultTableModel {

 public

ResultTableAdapter(Result r) {}

}

Test0() still passes, and test1() still fails.

The adapter is straightforward to write, but we begin by
writing a test.

public void

testResultTableAdapter() {

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

12 von 22 16.08.17, 12:00

 Result result = new

TestResult(2);

 ResultTableAdapter rta = new

ResultTableAdapter(result);

 assertEquals("Author",

rta.getColumnName(0));

 assertEquals("Title",

rta.getColumnName(1));

 assertEquals("Year",

rta.getColumnName(2));

 assert("3 columns",

rta.getColumnCount() == 3);

 assert("Row count=2",

rta.getRowCount() == 2);

 assertEquals("a0",

rta.getValueAt(0,0).toString());

 assertEquals("y1",

rta.getValueAt(1,2).toString());

}

The test fails because the dummy implementation doesn't
do anything.

Bounce over and implement the ResultTableAdapter.
Change it to be a subclass of AbstractTableModel (instead
of DefaultTableModel), then implement the column names,
column and row counts, and finally getValueAt().

public class ResultTableAdapter

 extends

AbstractTableModel implements

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

13 von 22 16.08.17, 12:00

TableModel {

 final static String

columnNames[] = {"Author",

"Title", "Year"};

 Result myResult;

 public

ResultTableAdapter(Result r)

{myResult = r;}

 public String

getColumnName(int i) {return

columnNames[i];}

 public int getColumnCount()

{return columnNames.length;}

 public int getRowCount()

{return

myResult.getItemCount();}

 public Object getValueAt(int

r, int c) {

 Document doc =

myResult.getItem(r);

 switch(c) {

 case 0: return

doc.getAuthor();

 case 1: return

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

14 von 22 16.08.17, 12:00

doc.getTitle();

 case 2: return

doc.getYear();

 default: return "?";

 }

 }

}

This test (testResultTableAdapter) should pass, and
so should test1().

TestN and More

Write testN(), with say 5 items. It will also pass.

What else can give you problems? One possible problem
occurs when we do a sequence of queries – can we get
"leftovers"? For example, a query returning 5 items followed
by a query returning 3 items should only have 3 items in the
table. (If the table were improperly cleared, we might see
the last two items of the previous query.)

We can test a sequence of queries:

public void

testQuerySequenceForLeftovers() {

 SearchPanel sp = new

SearchPanel();

 sp.setSearcher (new

TestSearcher());

 sp.queryField.setText("5");

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

15 von 22 16.08.17, 12:00

 sp.findButton.doClick();

assert(sp.resultTable.getRowCount()

== 5);

 sp.queryField.setText("3");

 sp.findButton.doClick();

assert(sp.resultTable.getRowCount()

== 3);

}

This test passes.

Testing for Looks

We have a properly connected panel. We can check the
widgets' relative locations:

label left-of queryField

queryField left-of findButton

queryField above table

(Would we bother with these tests? Perhaps not, we might
just put the panel on-screen and deal with its contents
manually. There are times when such tests would definitely
be appropriate: perhaps when we're working against a style
guide, or when the window format is expected to be stable.)

To make this test run, we need to put our panel in a frame
or window. (Components don't have their screen locations
set until their containing window is created.)

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

16 von 22 16.08.17, 12:00

public void testRelativePosition() {

 SearchPanel sp = new SearchPanel();

 JFrame display = new JFrame("test");

 display.getContentPane().add(sp);

 display.setSize(500,500);

 display.setVisible(true);

 //try {Thread.sleep(3000);} catch

(Exception ex) {}

 assert ("label left-of query",

sp.searchLabel.getLocationOnScreen().x

 <

sp.queryField.getLocationOnScreen().x);

 assert ("query left-of button",

sp.queryField.getLocationOnScreen().x

 <

sp.findButton.getLocationOnScreen().x);

 assert ("query above table",

sp.queryField.getLocationOnScreen().y

 <

sp.resultTable.getLocationOnScreen().y);

}

The test fails, as we haven't done anything to put widgets

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

17 von 22 16.08.17, 12:00

on the panel. (You can un-comment the sleep() if you want
to see it on-screen.)

To implement panels, I usually do a screen design that
shows the intermediate panels and layouts:

Now we can lay out the panel:

public SearchPanel() {

 super (new BorderLayout());

 findButton.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 Query q = new

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

18 von 22 16.08.17, 12:00

Query(queryField.getText());

 resultTable.setModel(

 new

ResultTableAdapter(getSearcher().find(q)));

 }

 });

 JPanel topPanel = new JPanel(new

BorderLayout());

 topPanel.add(searchLabel,

BorderLayout.WEST);

 topPanel.add(queryField,

BorderLayout.CENTER);

 topPanel.add(findButton,

BorderLayout.EAST);

 this.add(topPanel, BorderLayout.NORTH);

 this.add(new JScrollPane(resultTable),

BorderLayout.CENTER);

}

Compile, test, and it works.

We've successfully implemented our panel!

Main

To complete the system, we'll create a main() routine:

public class Main {

 public static void

main(String[] args) {

 if (args.length == 0) {

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

19 von 22 16.08.17, 12:00

 System.err.println(

 "Arg - file

w/tab-delimited author/title

/year");

 System.exit(1);

 }

 Searcher searcher = null;

 try {

 searcher =

SearcherFactory.get(args[0]);

 } catch (Exception ex) {

 System.err.println(

 "Unable to open

file " + args[0] + "; " + ex);

 System.exit(1);

 }

 SearchPanel sp = new

SearchPanel();

 sp.setSearcher(searcher);

 JFrame display = new

JFrame("Bibliographic System - "

+ args[0]);

display.getContentPane().add(sp);

 display.setSize(500,500);

 display.setVisible(true);

 }

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

20 von 22 16.08.17, 12:00

}

Conclusions

We've completed development of our user interface. Not
every aspect of a GUI can be unit-tested through the
approach we've used, but we've identified a number of
useful techniques:

Even GUI development can maintain the cycle-in-the-small
of test-code-design.

GUI tests can be robust against changes in how the widgets
are arranged on-screen.

Fields and buttons can be simulated with getText(),
setText(), doClick(), etc.

Stub out the services provided by the model, to get fine-
grained control over what the GUI test shows.

We can test relative positioning using
getLocationOnScreen().

Unit tests can be tedious to write, but they save you time in
the future (by catching bugs after changes). Less obviously,
but just as important, is that they can save you time now:
tests focus your design and implementation on simplicity,
they support refactoring, and they validate features as you
develop.

Resources and Related Articles

xp0001.zip contains gui.jar (Java code for the GUI) and
search.jar (Java code from part 1, the model).

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

21 von 22 16.08.17, 12:00

"The Test/Code Cycle in XP: Part 1, Model", William Wake.
(Chapter 1 of Extreme Programming Explored.)

Extreme Programming Explained: Embrace Change, Kent
Beck.

Refactoring: Improving the Design of Existing Code, Martin
Fowler.

JUnit home

Test-First Challenge

Translations

Japanese: Part 1, Part 2. Courtesy of Shinichi Omura.

[Written 1-3-2000; revised 2-1-2000; re-titled and revised 2-4-2000.

Linked to xp0001.zip, 10-26-2000.]

The Test/Code Cycle in XP, Part 2: GUI about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

22 von 22 16.08.17, 12:00

